A Clustering Protocol for Team Formation Based on Concept, Location, and Time
نویسندگان
چکیده
This paper presents a clustering protocol for team formation of intelligent agents. Since agents should be autonomous in their decision whether and with whom to cooperate, all decisions are made locally. The approach is not limited to quantitative distance measures, but is also suited for qualitative representations of concept, location, and time.
منابع مشابه
New spatial clustering-based models for optimal urban facility location considering geographical obstacles
The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which f...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملA Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection
Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decisi...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کامل